Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 128: 111449, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38199196

RESUMEN

Asthma is a chronic inflammatory respiratory disease. Early-life antibiotic exposure is a unique risk factor for the incidence and severity of asthma later in life. Perturbations in microbial-metabolite-immune interaction caused by antibiotics are closely associated with the pathogenesis of allergy and asthma. We investigated the effect of early intervention with common oral antibiotics on later asthma exacerbations and found that different antibiotic exposures can amplify different types of immune responses induced by HDM. Cefixime (CFX) promoted a biased type 2 inflammation, azithromycin (AZM) enhanced Th17 immune response, and cefuroxime axetil (CFA) induced eosinophils recruitment. Moreover, early-life antibiotic exposure can have short- and long-term effects on the abundance, composition, and diversity of the gut microbiota. In the model of CFX-promoted type 2 airway inflammation, fecal metabolomics indicated abnormal lipid metabolism and T cell response. Lipidomic also suggested allergic airway inflammation amplified by CFX is closely associated with abnormal lipid metabolism in lung tissues. Moreover, abnormalities in lipid metabolism-related genes (LMRGs) were found to have cellular heterogeneity be associated with asthma severity by bioinformatics analysis.


Asunto(s)
Asma , Microbioma Gastrointestinal , Animales , Humanos , Pyroglyphidae , Antibacterianos , Metabolismo de los Lípidos , Pulmón/patología , Dermatophagoides pteronyssinus , Inflamación/metabolismo , Modelos Animales de Enfermedad
2.
Int Immunopharmacol ; 125(Pt B): 111206, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37956491

RESUMEN

Liver fibrosis is a major global health issue, and immune dysregulation is a main contributor. Triptolide is a natural immunosuppressive agent with demonstrated effectiveness in ameliorating liver fibrosis, but whether it exerts anti-liver fibrotic effects via immunoregulation remains obscure. In this study, first, by employing a CCL4-induced liver fibrosis mouse model, we demonstrated that triptolide could alleviate pathological damage to liver tissue and attenuate liver function damaged by CCL4. In addition, triptolide inhibited the expression of liver fibrotic markers such as hydroxyproline, collagen type IV, hyaluronidase, laminin, and procollagen type III, and the protein expression of α-SMA in CCL4-induced liver fibrosis. Second, with the help of network pharmacology, we predicted that triptolide's anti-liver fibrotic effects might occur through the regulation of Th17, Th1, and Th2 cell differentiation, which indicated that triptolide might mitigate liver fibrosis via immunoregulation. Finally, multiplex immunoassays and flow cytometry were adopted to verify this prediction. The results suggested that triptolide could reverse the aberrant expression of inflammatory cytokines caused by CCL4 and regulate the differentiation of Th1, Th2, Th17, and Treg cells. In conclusion, triptolide could attenuate CCL4-induced liver fibrosis by regulating the differentiation of CD4+ T cells. The results obtained in this study extended the application of triptolide and introduced a new mechanism of triptolide's anti-liver fibrotic effects.


Asunto(s)
Cirrosis Hepática , Hígado , Ratones , Animales , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado/patología , Linfocitos T Reguladores , Diferenciación Celular , Tetracloruro de Carbono/efectos adversos
3.
Adv Healthc Mater ; 12(31): e2301826, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37681364

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory illness affecting the colon and rectum, with current treatment methods being unable to meet the clinical needs of ulcerative colitis patients. Although nanomedicines are recognized as promising anti-inflammatory medicines, their clinical application is limited by their high cost and unpredictable safety risks. This study reveals that two natural phytochemicals, berberine (BBR) and hesperetin (HST), self-assemble directly to form binary carrier-free multi-functional spherical nanoparticles (BBR-HST NPs) through noncovalent bonds involving electrostatic interactions, π-π stacking, and hydrogen bonding. Because of their synergistic anti-inflammatory activity, berberine-hesperetin nanoparticles (BBR-HST NPs) exhibit significantly better therapeutic effects on UC and inhibitory effects on inflammation than BBR and HST at the same dose by regulating the immune microenvironment and repairing the damaged intestinal barrier. Furthermore, BBR-HST NPs exhibit good biocompatibility and biosafety. Thus, this study proves the potential of novel natural anti-inflammatory nanoparticles as therapeutic agents for UC, which could promote the progress of drug development for UC and eventually benefit patients who suffering from it.


Asunto(s)
Berberina , Colitis Ulcerosa , Nanopartículas , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Berberina/farmacología , Berberina/uso terapéutico , Intestinos , Nanopartículas/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
4.
EPMA J ; 14(3): 417-442, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37605652

RESUMEN

Background: Idiopathic pulmonary fibrosis (IPF) is a rare interstitial lung disease with a poor prognosis that currently lacks effective treatment methods. Preventing the acute exacerbation of IPF, identifying the molecular subtypes of patients, providing personalized treatment, and developing individualized drugs are guidelines for predictive, preventive, and personalized medicine (PPPM / 3PM) to promote the development of IPF. Oxidative stress (OS) is an important pathological process of IPF. However, the relationship between the expression levels of oxidative stress-related genes (OSRGs) and clinical indices in patients with IPF is unclear; therefore, it is still a challenge to identify potential beneficiaries of antioxidant therapy. Because PPPM aims to recognize and manage diseases by integrating multiple methods, patient stratification and analysis based on OSRGs and identifying biomarkers can help achieve the above goals. Methods: Transcriptome data from 250 IPF patients were divided into training and validation sets. Core OSRGs were identified in the training set and subsequently clustered to identify oxidative stress-related subtypes. The oxidative stress scores, clinical characteristics, and expression levels of senescence-associated secretory phenotypes (SASPs) of different subtypes were compared to identify patients who were sensitive to antioxidant therapy to conduct differential gene functional enrichment analysis and predict potential therapeutic drugs. Diagnostic markers between subtypes were obtained by integrating multiple machine learning methods, their expression levels were tested in rat models with different degrees of pulmonary fibrosis and validation sets, and nomogram models were constructed. CIBERSORT, single-cell RNA sequencing, and immunofluorescence staining were used to explore the effects of OSRGs on the immune microenvironment. Results: Core OSRGs classified IPF into two subtypes. Patients classified into subtypes with low oxidative stress levels had better clinical scores, less severe fibrosis, and lower expression of SASP-related molecules. A reliable nomogram model based on five diagnostic markers was constructed, and these markers' expression stability was verified in animal experiments. The number of neutrophils in the immune microenvironment was significantly different between the two subtypes and was closely related to the degree of fibrosis. Conclusion: Within the framework of PPPM, this work comprehensively explored the role of OSRGs and their mediated cellular senescence and immune processes in the progress of IPF and assessed their capabilities aspredictors of high oxidative stress and disease progression,targets of the vicious loop between regulated pulmonary fibrosis and OS for targeted secondary and tertiary prevention, andreferences for personalized antioxidant and antifibrotic therapies. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00334-4.

5.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2739-2748, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282934

RESUMEN

Ulcerative colitis(UC) is a recurrent, intractable inflammatory bowel disease. Coptidis Rhizoma and Bovis Calculus, serving as heat-clearing and toxin-removing drugs, have long been used in the treatment of UC. Berberine(BBR) and ursodeoxycholic acid(UDCA), the main active components of Coptidis Rhizoma and Bovis Calculus, respectively, were employed to obtain UDCA-BBR supramolecular nanoparticles by stimulated co-decocting process for enhancing the therapeutic effect on UC. As revealed by the characterization of supramolecular nanoparticles by field emission scanning electron microscopy(FE-SEM) and dynamic light scattering(DLS), the supramolecular nanoparticles were tetrahedral nanoparticles with an average particle size of 180 nm. The molecular structure was described by ultraviolet spectroscopy, fluorescence spectroscopy, infrared spectroscopy, high-resolution mass spectrometry, and hydrogen-nuclear magnetic resonance(H-NMR) spectroscopy. The results showed that the formation of the supramolecular nano-particle was attributed to the mutual electrostatic attraction and hydrophobic interaction between BBR and UDCA. Additionally, supramolecular nanoparticles were also characterized by sustained release and pH sensitivity. The acute UC model was induced by dextran sulfate sodium(DSS) in mice. It was found that supramolecular nanoparticles could effectively improve body mass reduction and colon shortening in mice with UC(P<0.001) and decrease disease activity index(DAI)(P<0.01). There were statistically significant differences between the supramolecular nanoparticles group and the mechanical mixture group(P<0.001, P<0.05). Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum levels of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6), and the results showed that supramolecular nanoparticles could reduce serum TNF-α and IL-6 levels(P<0.001) and exhibited an obvious difference with the mechanical mixture group(P<0.01, P<0.05). Flow cytometry indicated that supramolecular nanoparticles could reduce the recruitment of neutrophils in the lamina propria of the colon(P<0.05), which was significantly different from the mechanical mixture group(P<0.05). These findings suggested that as compared with the mechanical mixture, the supramolecular nanoparticles could effectively improve the symptoms of acute UC in mice. The study provides a new research idea for the poor absorption of small molecules and the unsatisfactory therapeutic effect of traditional Chinese medicine and lays a foundation for the research on the nano-drug delivery system of traditional Chinese medicine.


Asunto(s)
Berberina , Colitis Ulcerosa , Colitis , Medicamentos Herbarios Chinos , Nanopartículas , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Ácido Ursodesoxicólico/efectos adversos , Berberina/farmacología , Interleucina-6 , Factor de Necrosis Tumoral alfa/farmacología , Medicamentos Herbarios Chinos/farmacología , Colon , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Colitis/inducido químicamente
6.
Nat Commun ; 14(1): 741, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765085

RESUMEN

Histone H2B mono-ubiquitination at lysine 120 (ubH2B) has been found to regulate transcriptional elongation by collaborating with the histone chaperone FACT (Facilitates Chromatin Transcription) and plays essential roles in chromatin-based transcriptional processes. However, the mechanism of how ubH2B directly collaborates with FACT at the nucleosome level still remains elusive. In this study, we demonstrate that ubH2B impairs the mechanical stability of the nucleosome and helps to recruit FACT by enhancing the binding of FACT on the nucleosome. FACT prefers to bind and deposit H2A-ubH2B dimers to form an intact nucleosome. Strikingly, the preferable binding of FACT on ubH2B-nucleosome greatly enhances nucleosome stability and maintains its integrity. The stable altered nucleosome state obtained by ubH2B and FACT provides a key platform for gene transcription, as revealed by genome-wide and time-course ChIP-qPCR analyses. Our findings provide mechanistic insights of how ubH2B directly collaborates with FACT to regulate nucleosome dynamics for gene transcription.


Asunto(s)
Histonas , Nucleosomas , Histonas/metabolismo , Activación Transcripcional , Cromatina , Ubiquitinación
7.
Heliyon ; 9(2): e12424, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36755610

RESUMEN

Background: As an increasingly popular complementary and alternative approach for early detection and treatment of disease, traditional Chinese medicine constitution (TCMC) divides human beings into those with balanced constitution (BC) and unbalanced constitution, where damp-heat constitution (DHC) is one of the most unbalanced constitutions. Many studies have been carried out on the microscopic mechanism of constitution classification; however, most of these studies were conducted in adults and rarely in infants. Many diseases are closely related to intestinal microbiota, and metabolites produced by the interaction between microbiota and the body may impact constitution classification. Herein, we investigated the overall constitution distribution in Chinese infants, and analyzed the profiles of gut microbiota and urine metabolites of DHC to further promote the understanding of infants constitution classification. Methods: General information was collected and TCMC was evaluated by Constitutional Medicine Questionnaires. 1315 questionnaires were received in a cross-sectional study to investigate the constitution composition in Chinese infants. A total of 56 infants, including 30 DHC and 26 BC, were randomly selected to analyze gut microbiota by 16S rRNA sequencing and urine metabolites by UPLC-Q-TOF/MS method. Results: BC was the most common constitution in Chinese infants, DHC was the second common constitution. The gut microbiota and urine metabolites in the DHC group showed different composition compared to the BC group. Four differential genera and twenty differential metabolites were identified. In addition, the combined marker composed of four metabolites may have the high potential to discriminate DHC from BC with an AUC of 0.765. Conclusions: The study revealed the systematic differences in the gut microbiota and urine metabolites between infants with DHC and BC. Moreover, the differential microbiota and metabolites may offer objective evidences for constitution classification.

8.
Front Nutr ; 9: 992331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211517

RESUMEN

Background: Although fatty acid metabolism has been confirmed to be involved in the pathological process of idiopathic pulmonary fibrosis (IPF), systematic analyses on the immune process mediated by fatty acid metabolism-related genes (FAMRGs) in IPF remain lacking. Methods: The gene expression data of 315 patients with IPF were obtained from Gene Expression Omnibus database and were divided into the training and verification sets. The core FAMRGs of the training set were identified through weighted gene co-expression network analysis. Then, the fatty acid metabolism-related subtypes in IPF were identified on the basis of k-means unsupervised clustering. The scores of fatty acid metabolism and the expression of the fibrosis biomarkers in different subtypes were compared, and functional enrichment analysis was carried out on the differentially expressed genes between subtypes. A random forest model was used to select important FAMRGs as diagnostic markers for distinguishing between subtypes, and a line chart model was constructed and verified by using other datasets and rat models with different degrees of pulmonary fibrosis. The difference in immune cell infiltration among subtypes was evaluated with CIBERSORT, and the correlation between core diagnostic markers and immune cells were analyzed. Results: Twenty-four core FAMRGs were differentially expressed between the training set and normal samples, and IPF was divided into two subtypes. Significant differences were observed between the two subtypes in biological processes, such as linoleic acid metabolism, cilium movement, and natural killer (NK) cell activation. The subtype with high fatty acid metabolism had more severe pulmonary fibrosis than the other subtype. A reliable construction line chart model based on six diagnostic markers was constructed, and ABCA3 and CYP24A1 were identified as core diagnostic markers. Significant differences in immune cell infiltration were found between the two subtypes, and ABCA3 and CYP24A1 were closely related to NK cells. Conclusion: Fatty acid metabolism and the immune process that it mediates play an important role in the occurrence and development of IPF. The analysis of the role of FAMRGs in IPF may provide a new potential therapeutic target for IPF.

9.
Front Physiol ; 13: 909209, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051916

RESUMEN

The prevalence rates of obesity and its complications have increased dramatically worldwide. Obesity can lead to low-grade chronic systemic inflammation, which predisposes individuals to an increased risk of morbidity and mortality. Although obesity has received considerable interest in recent years, the essential role of obesity in asthma development has not been explored. Asthma is a common chronic inflammatory airway disease caused by various environmental allergens. Obesity is a critical risk factor for asthma exacerbation due to systemic inflammation, and obesity-related asthma is listed as an asthma phenotype. A suitable model can contribute to the understanding of the in-depth mechanisms of obese asthma. However, stable models for simulating clinical phenotypes and the impact of modeling on immune response vary across studies. Given that inflammation is one of the central mechanisms in asthma pathogenesis, this review will discuss immune responses in the airways of obese asthmatic mice on the basis of diverse modeling protocols.

10.
Front Immunol ; 13: 937832, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967302

RESUMEN

Background: Although studies have shown that cell pyroptosis is involved in the progression of asthma, a systematic analysis of the clinical significance of pyroptosis-related genes (PRGs) cooperating with immune cells in asthma patients is still lacking. Methods: Transcriptome sequencing datasets from patients with different disease courses were used to screen pyroptosis-related differentially expressed genes and perform biological function analysis. Clustering based on K-means unsupervised clustering method is performed to identify pyroptosis-related subtypes in asthma and explore biological functional characteristics of poorly controlled subtypes. Diagnostic markers between subtypes were screened and validated using an asthma mouse model. The infiltration of immune cells in airway epithelium was evaluated based on CIBERSORT, and the correlation between diagnostic markers and immune cells was analyzed. Finally, a risk prediction model was established and experimentally verified using differentially expressed genes between pyroptosis subtypes in combination with asthma control. The cMAP database and molecular docking were utilized to predict potential therapeutic drugs. Results: Nineteen differentially expressed PRGs and two subtypes were identified between patients with mild-to-moderate and severe asthma conditions. Significant differences were observed in asthma control and FEV1 reversibility between the two subtypes. Poor control subtypes were closely related to glucocorticoid resistance and airway remodeling. BNIP3 was identified as a diagnostic marker and associated with immune cell infiltration such as, M2 macrophages. The risk prediction model containing four genes has accurate classification efficiency and prediction value. Small molecules obtained from the cMAP database that may have therapeutic effects on asthma are mainly DPP4 inhibitors. Conclusion: Pyroptosis and its mediated immune phenotype are crucial in the occurrence, development, and prognosis of asthma. The predictive models and drugs developed on the basis of PRGs may provide new solutions for the management of asthma.


Asunto(s)
Asma , Piroptosis , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Asma/diagnóstico , Asma/tratamiento farmacológico , Asma/genética , Ratones , Simulación del Acoplamiento Molecular , Pronóstico , Piroptosis/genética
11.
J Leukoc Biol ; 112(3): 425-435, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35815539

RESUMEN

With the concept of the gut-lung axis reinforced in recent years, emerging evidence has shown that intestinal homeostasis is vital for lung health. Nevertheless, the impacts of lung homeostasis on intestinal tracts and their mechanism are rarely studied. Our results showed that papain-induced asthmatic mice exhibited apparent colonic injuries compared with controls, including increased intestinal permeability, neutrophil and Th17 infiltration in the colonic lamina propria. Moreover, the intranasal administration of papain aggravated such colonic injuries in mice with dextran sulfate sodium-induced colitis, as evidenced by increased occult blood scores, shortened colon length, and accumulated neutrophils. The level of IL-17A was also higher in the serum of asthmatic mice than wild-type mice. Interestingly, the pathologic scores, the proportion of Th17 cells, and neutrophil infiltration in the colon were markedly reduced after IL-17A blocking. Similarly, longer length, lower pathologic scores, and fewer neutrophils were also observed in the colon of IL-17-deficient asthmatic mice. More importantly, we demonstrated that severe gastrointestinal symptoms could accompany clinical asthmatics. The frequencies of Th17 cells and the mRNA expression of IL-17A in the peripheral blood of these patients were significantly enhanced. Besides, the gastrointestinal symptom rating scale scores positively correlated with the frequencies of Th17 in asthmatics. These findings enlighten that IL-17A aggravates asthma-induced intestinal immune injury by promoting neutrophil trafficking, which facilitates the exploration of new potential biomarkers to treat asthma.


Asunto(s)
Asma , Colitis , Interleucina-17 , Neutrófilos , Animales , Asma/complicaciones , Colitis/etiología , Colitis/inmunología , Sulfato de Dextran , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos C57BL , Neutrófilos/citología , Papaína/metabolismo , Células Th17
12.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1913-1920, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35534262

RESUMEN

This study explored whether Sagittaria sagittifolia polysaccharides(SSP) activates the nuclear factor erythroid-2-related factor2(Nrf2)/heme oxygenase-1(HO-1) signaling pathway to protect against liver damage jointly induced by multiple heavy metals. First, based on the proportion of dietary intake of six heavy metals in rice available in Beijing market, a heavy metal mixture was prepared for inducing mouse liver injury and HepG2 cell injury. Forty male Kunming mice were divided into five groups: control group, model group, glutathione positive control group, and low-and high-dose SSP groups, with eight mice in each group. After 30 days of intragastric administration, the liver injury in mice was observed by HE staining. In the in vitro experiment, MTT assay was conducted to detect the effects of SSP at 0.25, 0.5, 1, and 2 mg·mL~(-1) on HepG2 cell survival at different time points. The content of alanine transaminase(ALT) and aspartate aminotransferase(AST) in the 48-h cell culture fluid was measured using micro-plate cultivation method, followed by the detection of the change in reactive oxygen species(ROS) content by flow cytometry. The mRNA expression levels of Nrf2 and HO-1 in cells were determined by RT-PCR, and their protein expression by Western blot. HE staining results showed that compared with the model group, the SSP administration groups exhibited significantly alleviated inflammatory cell infiltration and fatty infiltration in the liver, with better outcomes observed in the high-dose SSP group. In the in vitro MTT assay, compared with the model group, SSP at four concentrations all significantly increased the cell survival rate, decreased the ALT, AST, and ROS content(P<0.05), and down-regulated Nrf2 and HO-1 mRNA and protein expression(P<0.05). SSP significantly improves inflammatory infiltration in the liver tissue of mice exposed to a variety of heavy metals and corrects the liver fat degeneration, which may be related to its regulation of the Nrf2/HO-1 signaling pathway, reduction of ROS, and alleviation of oxidative damage.


Asunto(s)
Metales Pesados , Sagittaria , Animales , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Hígado , Masculino , Metales Pesados/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Polisacáridos/farmacología , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sagittaria/genética , Sagittaria/metabolismo
13.
Front Immunol ; 13: 897835, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619697

RESUMEN

Background: Autophagy has been proven to play an important role in the pathogenesis of asthma and the regulation of the airway epithelial immune microenvironment. However, a systematic analysis of the clinical importance of autophagy-related genes (ARGs) regulating the immune microenvironment in patients with asthma remains lacking. Methods: Clustering based on the k-means unsupervised clustering method was performed to identify autophagy-related subtypes in asthma. ARG-related diagnostic markers in low-autophagy subtypes were screened, the infiltration of immune cells in the airway epithelium was evaluated by the CIBERSORT, and the correlation between diagnostic markers and infiltrating immune cells was analyzed. On the basis of the expression of ARGs and combined with asthma control, a risk prediction model was established and verified by experiments. Results: A total of 66 differentially expressed ARGs and 2 subtypes were identified between mild to moderate and severe asthma. Significant differences were observed in asthma control and FEV1 reversibility between the two subtypes, and the low-autophagy subtype was closely associated with severe asthma, energy metabolism, and hormone metabolism. The autophagy gene SERPINB10 was identified as a diagnostic marker and was related to the infiltration of immune cells, such as activated mast cells and neutrophils. Combined with asthma control, a risk prediction model was constructed, the expression of five risk genes was supported by animal experiments, was established for ARGs related to the prediction model. Conclusion: Autophagy plays a crucial role in the diversity and complexity of the asthma immune microenvironment and has clinical value in treatment response and prognosis.


Asunto(s)
Asma , Serpinas , Animales , Asma/etiología , Autofagia/genética , Proteína 5 Relacionada con la Autofagia/genética , Epitelio/metabolismo , Humanos , Pronóstico
14.
J Inorg Biochem ; 232: 111810, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35367820

RESUMEN

The hepatic protective role of Sagittaria sagittifolia polysaccharide (SSP) and its possible mechanism were discussed in mice and L02 hepatocytes injured by heavy metals mixture of Cd + Cr (VI) + Pb + Mn + Zn + Cu. After 30-day intervention, blood and liver samples were collected for the relevant assessments. Methyl thiazolyl tetrazolium (MTT) assay showed 24 h was the best protecting point and the SSP protection at 1 mg/mL was strongest in L02 hepatocytes. SSP can alleviated hepatic injury, as evidenced by significantly decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and the malondialdehyde (MDA) content, also increased the superoxide dismutase (SOD) activity and glutathione (GSH), total sulphydryl (T-SH) contents. SSP effectively reduced pathological damage of mice and accumulation of heavy metals in liver, as well as decreased the level of reactive oxygen species (ROS) in L02 hepatocytes. After SSP treatment, the protein expressions or gene transcription of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H dehydrogenase, quinone 1 (NQO1) and heme oxygenase1 (HO-1) decreased in L02. The protein expression of Nrf2 and NQO1 were increased while HO-1 was decreased in liver. Besides, SSP can attenuates apoptosis through reducing the protein expression of Bcl-2-associated X protein (Bax) and caspase-3, and increasing B-cell lymphoma gene 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl). SSP protects against six-heavy-metal-induced hepatic injury in mice and L02 hepatocytes. Supported by Nrf2 gene silencing, the mechanisms may correlate with activating Nrf2 pathway to mitigate oxidative stress and apoptosis.


Asunto(s)
Linfoma de Células B , Metales Pesados , Sagittaria , Apoptosis , Glutatión/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/farmacología , Hígado/metabolismo , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Metales Pesados/metabolismo , Metales Pesados/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Polisacáridos/metabolismo , Polisacáridos/farmacología , Sagittaria/metabolismo , Transducción de Señal
15.
Int J Chron Obstruct Pulmon Dis ; 16: 3317-3335, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34916790

RESUMEN

PURPOSE: Chronic obstructive pulmonary disease (COPD), a prevalent obstructive airway disease, has become the third most common cause of death globally. Xuanbai Chengqi decoction (XBCQ) is a traditional Chinese medicine prescription for the acute exacerbation of COPD. Here, we aimed to reveal the therapeutic effects of XBCQ administration and its molecular mechanisms mediated by Th17/Treg balance and gut microbiota. METHODS: We determined the counts of Th17 and Treg cells in the serum of 15 COPD and 10 healthy subjects. Then, cigarette smoke extract-induced COPD mice were gavaged with low, middle, and high doses of XBCQ, respectively. Weight loss, pulmonary function and inflammation, Th17/Treg ratio, and gut microbiota were measured to evaluate the efficacy of XBCQ on COPD. RESULTS: COPD patients had a higher Th17/Treg ratio in the serum than healthy controls, which was consistent with the results in the lung and colon of COPD mice. The middle dose of XBCQ (M-XBCQ) significantly decreased the weight loss and improved the pulmonary function (FEV0.2/FVC) in COPD mice. Moreover, M-XBCQ alleviated lung inflammation by rectifying the Th17/Treg imbalance, reducing the expressions of TNF-α, IL-1ß, and MMP-9, and suppressing inflammatory cells infiltration. Meanwhile, M-XBCQ greatly improved the microbial homeostasis in COPD mice by accumulating probiotic Gordonibacter and Akkermansia but inhibiting the growth of pathogenic Streptococcus, which showed significant correlations with pulmonary injury. CONCLUSION: Oral M-XBCQ could alleviate COPD exacerbations by reshaping the gut microbiota and improving the Th17/Treg balance, which aids in elucidating the mechanism through which XBCQ as a therapy for COPD.


Asunto(s)
Microbioma Gastrointestinal , Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Animales , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Humanos , Ratones , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , Neumonía/prevención & control , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Linfocitos T Reguladores , Células Th17/metabolismo
16.
FASEB J ; 35(5): e21607, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33908664

RESUMEN

Strand displacement DNA synthesis (SDDS) is an essential step in DNA replication. With magnetic tweezers, we investigated SDDS kinetics of wild-type gp90 and its exonuclease-deficient polymerase gp90 exo- at single-molecule level. A novel binding state of gp90 to the fork flap was confirmed prior to SDDS, suggesting an intermediate in the initiation of SDDS. The rate and processivity of SDDS by gp90 exo- or wt-gp90 are increased with force and dNTP concentration. The rate and processivity of exonuclease by wt-gp90 are decreased with force. High GC content decreases SDDS and exonuclease processivity but increases exonuclease rate for wt-gp90. The high force and dNTP concentration and low GC content facilitate the successive SDDS but retard the successive exonuclease for wt-gp90. Furthermore, increasing GC content accelerates the transition from SDDS or exonuclease to exonuclease. This work reveals the kinetics of SDDS in detail and offers a broader cognition on the regulation of various factors on SDDS at single-polymerase level.


Asunto(s)
Bacteriófagos/fisiología , Replicación del ADN , ADN Viral/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , Pseudomonas aeruginosa/virología , Análisis de la Célula Individual/métodos , ADN Polimerasa Dirigida por ADN/genética , Recombinación Genética
17.
Biochemistry ; 60(7): 494-499, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33570402

RESUMEN

The candidate anticancer drug curaxins can insert into DNA base pairs and efficiently inhibit the growth of various cancers. However, how curaxins alter the genomic DNA structure and affect the DNA binding property of key proteins remains to be clarified. Here, we first showed that curaxin CBL0137 strongly stabilizes the interaction between the double strands of DNA and reduces DNA bending and twist rigidity simultaneously, by single-molecule magnetic tweezers. More importantly, we found that CBL0137 greatly impairs the binding of CTCF but facilitates trapping FACT on DNA. We revealed that CBL0137 clamps the DNA double helix that may induce a huge barrier for DNA unzipping during replication and transcription and causes the distinct binding response of CTCF and FACT on DNA. Our work provides a novel mechanical insight into CBL0137's anticancer mechanisms at the nucleic acid level.


Asunto(s)
Carbazoles/farmacología , ADN/efectos de los fármacos , Antineoplásicos/farmacología , Factor de Unión a CCCTC/química , Factor de Unión a CCCTC/metabolismo , Carbazoles/química , Línea Celular , Línea Celular Tumoral , ADN/metabolismo , Proteínas de Unión al ADN , Humanos , Microscopía de Fuerza Atómica/métodos , Pinzas Ópticas , Unión Proteica , Transcripción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Integr Med ; 19(2): 158-166, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33308987

RESUMEN

OBJECTIVE: This study tests whether long-term intake of Allium tuberosum (AT) can alleviate pulmonary inflammation in ovalbumin (OVA)-induced asthmatic mice and evaluates its effect on the intestinal microbiota and innate lymphoid cells (ILCs). METHODS: BALB/c mice were divided into three groups: phosphate buffer saline, OVA and OVA + AT. The asthmatic murine model was established by sensitization and challenge of OVA in the OVA and OVA + AT groups. AT was given to the OVA + AT group by oral gavage from day 0 to day 27. On day 28, mice were sacrificed. Histopathological evaluation of lung tissue was performed using hematoxylin and eosin, and periodic acid-Schiff staining. The levels of IgE in serum, interleukin-5 (IL-5) and IL-13 from bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay. The ILCs from the lung and gut were detected by flow cytometry. 16S ribosomal DNA sequencing was used to analyze the differences in colon microbiota among treatment groups. RESULTS: We found that long-term intake of AT decreased the number of inflammatory cells from BALF, reduced the levels of IL-5 and IL-13 in BALF, and IgE level in serum, and rescued pulmonary histopathology with less mucus secretion in asthmatic mice. 16S ribosomal DNA sequencing results showed that AT strongly affected the colonic bacteria community structure in asthmatic mice, although it had no significant effect on the abundance and diversity of the microbiota. Ruminococcaceae and Desulfovibrionaceae were identified as two biomarkers of the treatment effect of AT. Moreover, AT decreased the numbers of ILCs in both the lung and gut of asthmatic mice. CONCLUSION: The results indicate that AT inhibits pulmonary inflammation, possibly by impeding the activation of ILCs and adjusting the homeostasis of gut microbiota in asthmatic mice.


Asunto(s)
Cebollino , Microbioma Gastrointestinal , Neumonía , Animales , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Inmunidad Innata , Inflamación/tratamiento farmacológico , Pulmón , Linfocitos , Ratones , Ratones Endogámicos BALB C , Neumonía/tratamiento farmacológico
19.
J Asthma Allergy ; 13: 509-520, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33116659

RESUMEN

OBJECTIVE: In China, lamb and fish are well-known triggers for an asthma attack. Our investigation aims at assessing whether the long-term intake of lamb meat or Basa fish would aggravate pulmonary inflammation as well as exploring changes in the intestinal microbiota and immune cells in asthmatic mice. MATERIALS AND METHODS: The murine asthmatic model was established by intraperitoneal injection of ovalbumin (OVA) plus aluminum on day 0 and 14 and nebulization of OVA from day 21 to 27. Lamb meat or fish was administered to asthmatic mice by oral gavage from day 0 to 27. RESULTS: Our results showed that long-term consumption of lamb meat or Basa fish in asthmatic mice increased the number of inflammatory cells in bronchoalveolar lavage fluid (BALF), enhanced levels of IL-5, IL-13 in BALF and total IgE in serum, aggravated pulmonary inflammatory cell infiltration and mucus secretion. Long-term oral lamb enhanced the proportion of type 2 innate lymphoid cells (ILC2) from small intestine while it inhibited that of Treg from lung in asthmatic mice. Oral fish showed no remarkable effect on that of ILC2 from lung and small intestine but inhibited that of intestinal Treg in asthmatic mice. What's more, the chao-1 and observed species richness as well as PD whole tree diversity increased in asthmatic mice while these increments were inhibited after lamb treatment. PCA analysis indicated that there were significant differences in the bacterial community composition after lamb or fish treatment in asthmatic mice. Both lamb and fish treatment enhanced the abundance of colonic Alistipes in asthmatic mice. CONCLUSION: Collectively, long-term intake of lamb or fish shapes colonic bacterial communities and aggravates pulmonary inflammation in asthmatic mice, which provides reasonable food guidance for asthmatic patients.

20.
J Am Chem Soc ; 142(7): 3340-3345, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32003988

RESUMEN

Monoubiquitination at lysine 119 of histone H2A (ubH2A) is a prevalent post-translational modification that is associated with gene repression in the context of chromatin. However, the direct function of ubH2A on nucleosome is poorly understood. Here we identified the effect of ubH2A on nucleosome using single-molecule magnetic tweezers. We revealed that ubH2A stabilizes the nucleosome by blocking the peeling of DNA from the histone octamer. Each ubH2A reinforces one-half of the outer wrap and introduces a robust asymmetry for nucleosome unfolding. Furthermore, a real-time deubiquitination process confirmed that ubH2A-nucleosome is sequentially deubiquitinated and restored to the unmodified nucleosome state. These results provide a novel mechanism to understand the repression of the passage of RNA or DNA polymerases through the ubH2A-nucleosome barrier during gene transcription or replication.


Asunto(s)
Histonas/metabolismo , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitinación , ADN/metabolismo , Histonas/química , Humanos , Lisina/química , Estabilidad Proteica , Ubiquitina Tiolesterasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...